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Recently it was shown that Dirac’s method of quantizing constrained dynamical systems can be used to
impose the Lorenz gauge condition in a four-dimensional cosmological spacetime. In this paper we use
Dirac’s method to impose the Lorenz gauge condition in a general four-dimensional conformally flat
spacetime and find that there is no particle production. We show that in cosmological spacetimes with
dimension D ≠ 4 there will be particle production when the scale factor changes, and we calculate the
particle production due to a sudden change.
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I. INTRODUCTION

Recently it was shown [1] that Dirac’s method of
quantizing constrained dynamical systems [2,3] can be
used to impose the Lorenz gauge condition in a four-
dimensional cosmological spacetime. This method was
used to show that there is no particle production agreeing
with earlier results by Parker [4,5].
In this paper a gauge fixed Lagrangian is introduced for

the electromagnetic field in a conformally flat spacetime of
arbitrary dimension. The Lorenz gauge condition is
imposed as a gauge constraint and requires a secondary
constraint for consistency. There are no further constraints,
and both constraints are first class.
In four spacetime dimensions, the Hamiltonian simpli-

fies greatly. Due to the constraints imposed on the wave
function, the Hamiltonian can be quantized using the flat
spacetime procedure. As a result there is no particle
production in four-dimensional conformally flat space-
times. The Lagrangian introduced in this paper produces
a simpler Hamiltonian and simpler constraints than the one
used in Ref. [1] for the four-dimensional case.
We also use the gauge fixed Lagrangian to show that

there will generally be particle production inD dimensional
cosmological spacetimes due to the changing scale factor.
We then calculate the particle production that occurs for a
sudden change in scale factor. The Hamiltonian is not
bounded under such a transition so the wave function of the
system does not remain unchanged. We show that the state
vector picks up a phase factor, and we calculate the
resulting particle production.

II. HAMILTONIAN AND CONSTRAINTS
IN D DIMENSIONS

Consider a D dimensional conformally flat spacetime
with a metric

ds2 ¼ a2ðxμÞ½−dt2 þ dx21 þ � � � þ dx2D−1�: ð1Þ

The gauge fixed Lagrangian

L ¼ −
1

4

ffiffiffi
g

p
Fμν

~Fμν −
1

2

ffiffiffi
g

p ð∇μ
~AμÞ2; ð2Þ

where ~Fμν ¼ gμαgνβFαβ and ~Aμ ¼ gμνAν, can, after inte-
gration by parts, be written as

L ¼ −
1

2

ffiffiffi
g

p ½ð∇μAνÞð∇μ ~AνÞ − Rμν
~Aμ ~Aν�: ð3Þ

For the above metric, this becomes, after additional
integration by parts,

L ¼ −
1

2
bð∂μAνÞð∂μAνÞ − 2bðψμAμÞð∂νAνÞ

−
1

2
b½4ðD − 3Þψμψν − ðD − 4Þ∂μψν�AμAν; ð4Þ

where Aμ ¼ ημνAν, ∂μ ¼ ημν∂ν, b ¼ aD−4 and

ψμ ¼
1

a
∂μa: ð5Þ

The Lorenz gauge condition

∇μAμ ¼ 0 ð6Þ

can be written as

∂μAμ þ ðD − 2ÞψμAμ ¼ 0: ð7Þ
The canonical momenta are

Πμ ¼ b _Aμ þ 2bδμt ðψαAαÞ; ð8Þ
and the Lorenz gauge condition, written in terms of the
canonical momenta, is
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χ1 ¼
1

b
Πt þ ∂kAk þ ðD − 4ÞψμAμ ¼ 0: ð9Þ

The Hamiltonian density is given by

h ¼ 1

2b
ΠμΠμ þ

1

2
bð∂kAμÞð∂kAμÞ

−
1

2
bðD − 4Þð∂μψνÞAμAν þ 2bðψαAαÞχ1: ð10Þ

For consistency it is necessary that

_χ1 ¼ fχ1; Hg þ ∂χ1
∂t ≈ 0; ð11Þ

where fg denotes the Poisson bracket, H ¼ R
hdðD−1Þx,

and ≈ denotes a weak equality. This condition gives a
secondary constraint,

χ2 ¼ ∂k

�
∂kAt þ 1

b
Πk

�
þ ðD − 4Þψk

�
∂kAt þ 1

b
Πk

�
≈ 0:

ð12Þ

It is interesting to note that χ2 ¼ 1
b ∂kðbFk0Þ. The condition

_χ2 ≈ 0 does not produce a new constraint, so the procedure
terminates here. The constraints χ1 and χ2 are first class
since fχ1ðxÞ; χ2ðyÞg ¼ 0.

III. QUANTIZATION IN FOUR DIMENSIONS

In four spacetime dimensions, the Hamiltonian is
given by

H ¼
Z �

1

2
ΠμΠμ þ

1

2
ð∂kAμÞð∂kAμÞ þ 2ðψαAαÞχ1

�
d3x;

ð13Þ

while the constraints are given by

χ1 ¼ Πt þ ∂kAk ð14Þ

and

χ2 ¼ ∂kð∂kAt þ ΠkÞ: ð15Þ

These are identical to the expressions in flat spacetime,
except for the last term in the Hamiltonian involving χ1.
To quantize the theory, we follow the procedure devel-

oped by Dirac [2,3]. In the Schrödinger picture, the
dynamical variables Aμ and Πμ become time independent
operators satisfying

½Aμð~xÞ; Aνð~yÞ� ¼ ½Πμð~xÞ;Πνð~yÞ� ¼ 0 ð16Þ

and

½Aμð~xÞ;Πνð~yÞ� ¼ iδνμδ3ð~x; ~yÞ; ð17Þ

where ½ � denotes the commutator and we have set ℏ ¼ 1.
Note that there is an ambiguity in the ordering of the
operators in the last term in the Hamiltonian since χ1
contains Πt and ψαAα contains At. We have chosen the
ordering so that the Hamiltonian is given by (13).
A state vector is introduced that satisfies the Schrödinger

equation

i
d
dt

jΨi ¼ HjΨi: ð18Þ

The constraints are imposed on the wave function as
follows:

χ1jΨi ¼ 0 and χ2jΨi ¼ 0: ð19Þ

The last term in the Hamiltonian will therefore not affect
the equations of motion, and the theory can be quantized by
following the flat spacetime procedure.
This generalizes the results of Ref. [1] from a four-

dimensional cosmological spacetime to a general four-
dimensional conformally flat spacetime. Thus, there is no
particle production in four-dimensional conformally flat
spacetimes, as expected based on Parker’s calculation
for a massless conformally coupled scalar field [6]. The
Lagrangian used in this paper differs from the one used in
Ref. [1] by a total derivative and gives a simpler H, χ1
and χ2.

IV. QUANTIZATION IN D-DIMENSIONAL
COSMOLOGICAL SPACETIMES

To examine particle production in spacetimes with
D ≠ 4, we consider the case in which a depends only
on t. In this case ψk ¼ 0, and we write ψ t ¼ ψ .
The Hamiltonian is

H ¼ 1

2

Z �
1

b
ΠμΠμ þ bð∂kAμÞð∂kAμÞ

− 4bψAtχ1 − bðD − 4Þ _ψA2
t

�
dðD−1Þx; ð20Þ

while the constraints are

χ1 ¼
1

b
Πt þ ∂kAk − ðD − 4ÞψAt ð21Þ

and
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χ2 ¼ ∂k

�
∂kAt þ 1

b
Πk

�
: ð22Þ

For a consistent quantum theory, we require that
½χ1; χ2� ¼ αχ1 þ βχ2, where α and β are operators that
appear to the left of the constraints. This is satisfied
since ½χ1; χ2� ¼ 0.
To preserve the constraints under time evolution, it is

necessary that

∂χk
∂t − i½χk; H� ≈ 0; ð23Þ

where, in the quantum theory, A ≈ 0 implies that AjΨi ¼ 0.
It is easy to show that the constraints are preserved, as they
are in the classical case.
The constraint χ2 can be simplified. The term ∂mΠm

involves only the longitudinal part of Πm, and this
longitudinal part can be written as the gradient of a scalar
U. Thus, ∂mΠm ¼ ∇2U. The constraint χ2 can therefore be
written as

χ2 ¼ ∇2

�
At þ 1

b
U

�
: ð24Þ

Now, ∇2ðAt þ 1
bUÞ ≈ 0 over all space has the unique

solution At þ 1
bU ≈ 0 if the fields vanish at infinity.

Since we are quantizing the electromagnetic field on a
fixed background spacetime, we are free to make this
assumption.
The Hamiltonian can be decomposed into transverse and

longitudinal/timelike parts:

HT ¼ 1

2

Z �
1

b
Πm

ðTÞΠ
ðTÞ
m þ bð∂sA

ðTÞ
m Þð∂sAm

ðTÞÞ
�
dðD−1Þx;

ð25Þ

Hð1Þ
L ¼ b

2

Z �
∂r

�
1

b
U − At

�
∂r

�
1

b
U þ At

�

þ
�
∂mAm −

1

b
Πt −DψAt

�
χ1

�
dðD−1Þx; ð26Þ

and

Hð2Þ
L ¼ 1

2
ðD − 4Þb

×
Z

f2ψAtð∂kAkÞ − ½ðD − 4Þψ2 þ _ψ �A2
t gdðD−1Þx:

ð27Þ

Note that Hð1Þ
L ≈ 0, so that H ≈HT þHð2Þ

L .
To set up a Fock space representation in the Minkowski

in and out regions, where a is constant, the operators

aðλÞ~k
¼

Z
e−i~k·~x

�
k

ffiffiffi
b

p
ϵðλÞ~kμ

Aμð~xÞ þ iffiffiffi
b

p ϵðλÞ~kμ
Πμð~xÞ

�
dðD−1Þx

ð28Þ

and

a†ðλÞ~k
¼

Z
ei~k·~x

�
k

ffiffiffi
b

p
ϵðλÞ~kμ

Aμð~xÞ − iffiffiffi
b

p ϵðλÞ~kμ
Πμð~xÞ

�
dðD−1Þx

ð29Þ

can be introduced. Here k ¼ j~kj and ϵðλÞ~kμ
are the standard

(real) Minkowski polarization vectors. The factors of b in
the above expressions can be deduced by computing these
operators using the standard approach in the Heisenberg
picture and then transforming them into the Schrödinger
picture. These are also the unique factors of b that give the
standard commutation relations

½aðλÞ~k
; aðλ

0Þ
~k0

� ¼ ½a†ðλÞ~k
; a†ðλ

0Þ
~k0

� ¼ 0; ð30Þ

½aðλÞ~k
; a†ðλ

0Þ
~k0

� ¼ ð2πÞðD−1Þð2kÞηλλ0δðD−1Þð~k − ~k0Þ ð31Þ

and normal ordered Hamiltonian

∶HT∶ ¼ 1

2ð2πÞðD−1Þ
XD−2

λ¼1

Z
a†ðλÞ~ka

ðλÞ
~k
dðD−1Þk: ð32Þ

Note that the polarizations corresponding to λ¼1…ðD−2Þ
are transverse polarizations.
A vacuum state j0i can be introduced that satisfies

�
1

b
Πt þ ∂mAm

�
j0i ¼ 0;

�
1

b
∂mΠm þ∇2At

�
j0i ¼ 0; ð33Þ

and

aðλÞ~k
j0i ¼ 0; λ ¼ 1…ðD − 2Þ: ð34Þ

The operators aðλÞ~k
act as annihilation operators, and the

operators a†ðλÞ~k
act as creation operators. Note that j0ini will

not be the same as j0outi if bout ≠ bin. There will therefore
be particle production unless the in-vacuum state happens
to evolve into the out-vacuum state.
As an explicit example of particle production, consider

the case of a “sudden” change from a Minkowski space
with bin to one with bout. The sudden approximation
cannot be used because the Hamiltonian contains terms
involving ψ and _ψ which do not remain bounded as the
time interval over which the change takes place goes to
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zero. The behavior of the state vector can be determined by
introducing the ket jΨTi,

jΨTi¼exp

�
ib
Z �

Atð∂kAkÞ−1

2
ðD−4ÞψA2

t

�
dðD−1Þx

�
jΨi;

ð35Þ

which satisfies the equation of motion

i
d
dt

jΨTi ¼ HT jΨTi ð36Þ

and the constraints

ΠtjΨTi ¼ 0 and ∂kΠkjΨTi ¼ 0: ð37Þ

Since HT (25) remains bounded during the transition, the
sudden approximation can be used on the evolution of
jΨTi. This means that jΨTi does not change and that jΨi
picks up a phase factor during the transition. Thus, if the
initial state is the in-vacuum, then the state in the out region,
just after the transition, will be the in-vacuum with a phase
factor. Since the phase factor commutes with the transverse

aðλÞðinÞ~k, the state of the system will still be in the in-vacuum

state.
The Bogolubov transformation between the in and out

operators is given by

aðλÞðoutÞ~k ¼
�
bin þ bout
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
binbout

p
�
aðλÞðinÞ~k �

�
bout − bin
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
binbout

p
�
a†ðλÞðinÞ−~k; ð38Þ

where we have taken ϵðλÞð−~kÞμ ¼ �ϵðλÞ~kμ
. The expectation value

of NðλÞ
ðoutÞ~k ¼ a†ðλÞðoutÞ~ka

ðλÞ
ðoutÞ~k in the in-vacuum state is

h0injNðλÞ
ðoutÞ~kj0ini ¼

ðbout − binÞ2
4binbout

: ð39Þ

There will therefore be particles produced by the sudden
change in the scale factor when D ≠ 4.

V. CONCLUSION

In this paper we used Dirac’s method of quantizing
constrained dynamical systems to generalize the results of
Ref. [1]. We found that in four-dimensional conformally
flat spacetimes the Hamiltonian and constraints have the
same form as in flat space but for an extra term in the
Hamiltonian. Due to the constraints on the system, the extra
term has no effect on the equations of motion, so there is no
particle production in agreement with Ref. [6].
We also considered cosmological spacetimes withD ≠ 4

and found that there is particle production unless the in-
vacuum state happens to evolve into the out-vacuum state.
For a spacetime that undergoes a sudden change in scale
factor, the wave function of the system picks up a phase
factor because the Hamiltonian does not remain bounded.
Under the sudden change, we found that if the initial state is
the in-vacuum the final state will be the in-vacuum with a
phase factor. A Bogolubov transformation between the in
and out creation and annihilation operators showed that the
expectation value of the out-number operator in the in-
vacuum state is ðbout − binÞ2=4binbout where b ¼ aD−4 and
aðtÞ is the scale factor of the spacetime.
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